
The Design of a Fault-Tolerant,
Real-Time, Multi-Core Computer System

Kim P. Gostelow
Jet Propulsion Laboratory, California Institute of Technology

March 9, 2011

The Vision

• Look to when there are thousands of cores on a
spacecraft
– Expectation

• Faulty core=> computations move to another core
• Reduce power => performance slows, but does not quit

– Computations reorganize in real-time
– Introspective
– Little or no consideration needed by the programmer

3/9/11 2

Machine Architecture

• Large number of cores per chip
– No shared memory visible to the programmer

• Any shared memory is for internal purposes (e.g., message passing)

• Cores communicate with neighbors via high-speed,
message-passing links

• Cores and links
– May fail
– May be powered on and off

M

MD

D

. . .

. . .

3/9/11 3

The Issue

• The above can be achieved now, but only by costly,
special-case programming

• Programmers should not spend their time
orchestrating intricate (and brittle) data arrangements
and code
– It breaks when processors fail
– It should not be part of the job

• We want the machine, without intervention, without
programmer’s special attention, to re-organize its
work automatically in the face of cores and links
failing/re-appearing at random, in real-time.

3/9/11 4

A Solution: (Mostly) Functional Programming

Von Neumann
(Clocked sequential circuit)

Functional
(Asynchronous circuit)

An instruction executes when
the program counter reaches
it.

The function executes when
the required data arrives.

Instructions manipulate the
contents of memory cells.

Variables are mathematical
variables, not memory cells
cells (contents cannot
change once computed).
No side-effects, no shared
memory, no semaphores.

3/9/11 5

• Simple parallelism: Any two non-overlapping expressions can
be executed in parallel
– Consider: f(x) + f(y)

• von Neumann: f may have memory and the result may depend upon
the order of execution

• Functional: order of execution is irrelevant; there is no shared memory;
you always get the same answer for the same arguments

• Simple analyses:
– Always get the same outputs given the same inputs
– Can copy, stop, move, restart, … without concern
– Can re-execute any function at any time

• Can throw computations away and re-execute
• Can move computations without regard to memory
• For example, can execute any function in TMR at any time

Properties of Functional Programs

3/9/11 6

Example: generate-map-reduce

define gen-map-reduce (a, b, f, g) =
s = seq (a, b) # Generate the integers from a up to b
t = map (f, s) # Produce f(i) for each i
r = reduce (g, t) # Sum the results
return r

0 100

. . .

0 k-1

FF

+

99-(k-1) 99

FF

+

+ +

+

. . .

… …

. . . seq seq

seq seq

seq

sequence

0 100

mapper
f s

f f

reduce

unmapper
x

…

g

0 100 F +

gen-map-
reduce apply

<0 100 F +>
gen-map-reduce

P

3/9/11 7

Internals

• Each box is an Actor [Hewitt]
– Function application creates an actor frame for each actor in the

function.
– Each actor frame is sent to its assigned processor for execution.

• Actor execution
– Actor arguments arrive at the processor and are kept in the actor

frame.
– When all arguments have arrived, the actor executes.
– The actor sends its results to the next actor.
– The actor disappears.

3/9/11 8

Moving Computations

• The extra argument to apply gives the processors to
use for that call
– Higher-level calls pass allocations to lower-level calls
– Top-level allocation is from the system supervisor

• Responsive to faults and power availability

• A new processor allocation/assignment can occur at
each call

• For long-running functions, the values can be
updated and inner function calls can respond with
new assignments
– An update procedure moves in-process actor frames

3/9/11 9

Fault Tolerance

• Functions have no side-effects
• TMR: Apply runs N copies of

the function instead of
just one:
– Triplicate the actor frame
– Change the actor’s destination

actor to a TMR comparator actor
– The comparator checks the results

• Identical: send the result on to the original result actor.
• Different: carry out fault recovery

applyTMR

f a

f
f

a

f

compare
Failure
report

3/9/11 10

Non-functional Code

• State is treated differently (not
theoretically, but as a
practical matter)

• A small part of code
– Recognized in the source

language so no analysis
needed

• A function applied to a state
value can be replicated, moved, restarted, …

3/9/11 11

state
updater

setter/
getter

current state

f

initial
state

next state

Summary

• Very large number of cores are coming to spacecraft
– Computations need to adjust automatically to power and

hardware failure
– With little to no programmer assistance

• Thesis: (mostly) functional programming an approach
– Recognizing the special role played by state.

• Current work: building a simulator to find and
measure effective methods of adjusting computations
to power and fault circumstances.

3/9/11 12

